It would seem to be a simple task to find the melting point of a well known alkaloid like strychnine. Our quest to answer that question - and other simple properties - in class using both freely available and commercial databases reveals how treacherous it can be. In the end we don't find an unambiguous answer but we uncover enough information for many applications.
The take home message is that chemists need to be constantly paranoid that their information - whether from their lab or the most prestigious journals - can easily be wrong. Strategies such as finding multiple sources and investigating the experimental details provided in the primary sources are demonstrated to diminish uncertainty. But this is often not easy or quick.
Here is a summary of the lecture:
This is the lecture from the sixth Chemical Information Retrieval class at Drexel University on October 29, 2009. It starts with a review of some of the new questions answered by students from the chemistry publishing FAQ, which covers patent information and accessing electronic journals at Drexel. Tony Williams submitted a puzzle to resolve conflicting structures in ChemSpider, which is too difficult to be a regular assignment. It requires re-analyzing spectroscopic data in papers where stereochemical assignments are determined. An example is paromomycin which has three entries. The regular assignment for the week is then introduced and it involves obtaining 5 different sources each for 5 different properties for a molecule of the student's choosing. To demonstrate how to do the assignment strychnine is chosen as an example. Melting point information is obtained from ChemSpider (ultimately an MSDS sheet), Wikipedia, Wolfram Alpha and in a JACS article via SciFinder. By investigating primary sources several errors are found in SciFinder, where the recorded melting points correspond to salts of the alkaloid. Difficulties in finding primary sources for the melting point from Wikipedia are highlighted. For LD50 information Wikipedia did not even provide proper units (mg instead of mg/kg and no animal or route specified). The importance of ChemSpider predicted values for density and boiling point is demonstrated as a corroborating tool. In the end the reported melting point range of strychnine from the JACS paper did not even overlap with the reference to which it was compared. The exercise is meant to highlight the importance of caution in obtaining values from all available sources. Even the seemingly simple question of determining the melting point of well known alkaloid cannot be answered definitively.
Tidak ada komentar:
Posting Komentar